¹⁵N Nuclear Magnetic Resonance Spectra of Octaethylporphyrin

By KEIICHI KAWANO, YUKIHIRO OZAKI, and YOSHIMASA KYOGOKU* (Institute for Protein Research, Osaka University, Suita, Osaka 565, Japan)

and HISANOBU OGOSHI, HIROSHI SUGIMOTO, and ZEN-ICHI YOSHIDA

(Department of Synthetic Chemistry, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606, Japan)

Summary ^{15}N and ^{1}H n.m.r. spectra of 97% [^{15}N]octaethylporphyrin have clearly indicated that the two central hydrogens exchange between the four nitrogen atoms at and above room temperatures. the above argument. In addition the ^{15}N n.m.r. spectra of metal complexes of this porphyrin with Mg, Zn, and Cd were obtained.

The ¹⁵N label was incorporated during the Knorr synthesis of ethyl 3-acetyl-4-ethyl-2-methylpyrrole-5-carboxylate using Na¹⁵NO₂ (97·3%).² Proton-decoupled ¹⁶N n.m.r. spectra at 10·09 MHz were recorded on a JEOL-PFT-100 pulse Fourier transform n.m.r. system locked on deuterium. Chemical shifts were measured relative to external NH₄-¹⁵NO₈ in (CD₃)₂SO.

In the Figure only a sharp signal with a negative n.O.e. (nuclear Overhauser enhancement) is seen at 90 °C, indicat-

FROM the analyses of ¹H and ¹³C n.m.r. spectra of alkylsubstituted porphyrins and tetraphenylporphyrin it has been claimed that two central hydrogens exchange sufficiently rapidly for averaging the chemical shift differences at room temperature.¹ In the present investigation ¹⁵N and ¹H n.m.r. spectra of 97% [¹⁵N]-enriched octaethylporphyrin, [¹⁵N₄]-OEPH₂, were observed and these verified

ing that two central hydrogens exchange on the four nitrogen atoms rapidly enough to maintain four-fold symmetry on the n.m.r. time scale. At lower temperatures, however, two distinct resonances are observed. The position of the upper-field resonance (249.1 p.p.m.) is comparable with that of di-protonated $[^{15}N_4]$ -OEPH₄²⁺ in trifluoroacetic acid (253.7 p.p.m.), and the lower resonance

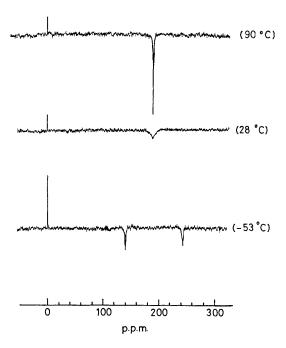


FIGURE. Temperature dependence of the proton-decoupled ${}^{16}N$ n.m.r. spectra of $97\,_{0}^{\prime}$ [${}^{15}N$]octaethylporphyrin, 0.019M in CDCl₂, 20k accumulations with 2 s intervals.

position (139.7 p.p.m.) is closer to that of N-1 of [¹⁵N₃]riboflavin (178.0 p.p.m.).³ Thus the two central hydrogens seem to be fixed on two of the nitrogen atoms at lower temperatures giving the upper-field resonance. The negative n.O.e. of the lower-field signal of the proton-free nitrogens is probably due to exchange being slow on the chemical shift time scale but fast on the T_1 time scale, and is partly due to their proximity to the fixed hydrogens.⁴ The two resonance signals coalesced around room temperature and the activation energy, ΔG^{\ddagger} , of the hydrogen exchange was calculated to be $ca. 12 \text{ kcal mol.}^{-1}$

The resonance of the central protons at 100 MHz showed a similar temperature dependency; at and above room temperature they gave a singlet and at lower temperature a doublet, owing to coupling to ¹⁵N. The coupling constant $[^{1}J(^{15}N-H) = 98 \text{ Hz}]$ is virtually identical with that reported for pheophytin a.5

The metal complexes of $[^{15}N_4]$ octaethylporphyrin with Mg, Zn, and Cd ions gave single non-inverted signals at 180.4 (in CDCl₃), 179.2 (in CDCl₃ + C_5D_5N), and 173.1 (in C_5D_5N) p.p.m., respectively. Although it was difficult to obtain spectra with high signal to noise ratios because of low solubility of the samples and long relaxation times of the proton-free ¹⁵N nuclei, the resonance positions were confirmed with INDOR by monitoring the methine proton resonances at 100 MHz.

In the ¹H n.m.r. spectrum the methine proton in metalfree $[^{15}N_{4}]$ -OEPH₂ is shown to be coupled to two ^{15}N atoms, three bonds removed, leading to a triplet for the X part of the A₂X system $[{}^{3}J({}^{16}N-H) = 4.7 \text{ Hz}]$. On complexation with the metal ion additional couplings are observed as shoulders resulting from 'virtual coupling'6 via the central metal ion. The spectra should be analysed as the X part of an A2A2'X system taking into account the couplings between the ¹⁵N nuclei.

(Received, 23rd November 1976; Com. 1295.)

¹ E. D. Becker, R. B. Bradley, and C. J. Watson, J. Amer. Chem. Soc., 1961, 83, 3743; C. B. Storm and Y. Teklu, *ibid.*, 1972, 94, 1745; R. J. Abraham, G. E. Hawkes, and K. M. Smith, *Tetrahedron Letters*, 1974, 16, 1483.

² H. H. Inhoffen, J.-H. Fuhrhop, H. Voigt, and H. Brockmann, Jr., Annalen, 1966, 695, 133.

- ⁶ R. H. Hundler, J. H. Fullhop, H. Volgt, and H. Ebockhaim, J., Hundern, 1900, 620, 42
 ⁸ K. Yagi, N. Ohishi, A. Takai, K. Kawano, and Y. Kyogoku, Biochemistry, 1976, 15, 2877.
 ⁴ R. L. Lichter and J. D. Roberts, J. Amer. Chem. Soc., 1971, 93, 3200.
 ⁵ S. G. Boxer, G. L. Closs, and J. J. Katz, J. Amer. Chem. Soc., 1974, 96, 7058.
 ⁶ J. M. Jenkins and B. L. Shaw, Proc. Chem. Soc., 1963, 279.